
CS 4530: Fundamentals of Software Engineering

Lesson 9.3 Static Program Analysis

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:
• Explain what a static analyzer is, and give some

examples.
• List some of the things that a static analyzer could do
• Explain some limitations of static analyzers in practice.

2

A Static Analyzer checks the program
without running it
• It inspects the program to detect certain patterns in the code.
• These could be patterns or anti-patterns.
• Could be bugs or style conventions

• Examples:
• The Typescript type checker
• ESlint

3

The Type System is a Static Analyzer
• The type checker reads the program and checks to see that every

place where a function is called, the given arguments match what the
function expects.
• Benefits:
• No pesky type errors at runtime
• VSC runs the typechecker as you write, and provides explanations of the

problems it finds.
• Guaranteed 100% statement coverage, even in dead or rarely executed code.

4

ESLint is your (favorite|least favorite) static
analyzer
• Linters = static analyzers for finding problematic patterns in code,

stylistic errors, bugs
• ESLint is a popular linter for JavaScript
• Customizable via a set of rules

5

Static Analyses can detect some dangerous
anti-patterns
• CWE-798: Use of Hard-

coded Credentials

https://cwe.mitre.org/data/definitions/798.html

Static Analysis showed this kind of fault was
widespread
• CWE-798: Use of Hard-coded Credentials: Study of

1.1m Android Apps

“A Measurement Study of Google Play,” Viennot et al, SIGMETRICS ‘14

https://cwe.mitre.org/data/definitions/798.html

This discovery led to action.

That example wasn’t hard: the tool just
looked for a certain regex.
• GitGuardian (Launched in 2017)

https://www.gitguardian.com/

Out-of-date dependencies may contain
vulnerabilities
• A9:2017-Using Components with Known

Vulnerabilities

https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities

Defects Static Analysis can Catch
• Defects that result from inconsistently following simple, mechanical

design rules.
• Security: Buffer overruns, improperly validated input.
• Memory safety: Null dereference, uninitialized data.
• Resource leaks: Memory, OS resources.
• API Protocols: Device drivers; real time libraries; GUI frameworks.
• Exceptions: Arithmetic/library/user-defined
• Encapsulation: Accessing internal data, calling private functions.
• Data races: Two threads access the same data without synchronization

11

Key: check compliance to simple, mechanical design rules

12

Static Analysis isn’t perfect
• Example: “every opened file is eventually closed”
• An analysis could miss some closes of opened files
• Or it could miss some open file not getting closed.

13

Getting precise results may require
compromise
• Getting precise results may take time:
• Some algorithms take exponential time.
• Practical algorithms are limited to linear time

• Getting precise results may require whole program:
• If parts of the program loaded at runtime:

• Analysis results may be very imprecise, or (worse)
• Incorrect, if they assume the whole program is available.

• Getting precise results may require intervention:
• Code may need to be annotated with information:

• E.g., “this method may return an open resource.”
• E.g., type annotations

14

What happens when an analysis is
imprecise?
FALSE NEGATIVES
• The static analysis misses

something ”bad” in program:
• Can give a false sense of

security.
• Can be reduced, but at the cost

of false positives!

FALSE POSITIVES
• The static analysis reports a

problem that doesn’t exist:
• Real bugs can be swamped by a

flood of spurious reports.
• Programmer time is wasted

chasing down false leads.

15

Bug Detection

16

False
Positive

True
Positive

True
Negative

False
Negative

We correctly
detect a bug.

We correctly
find no problem.

We miss a bug
in the system.

We generate a
false alarm.

Bug is presentBug is absent

Report

No Report

The fate of a bug report depends on more
than whether or not it is accurate
• A report from static analysis is effectively false,
• If it is ignored by developers;
• Whether or not it represents a true bug.

• Even if the report is technically correct
• It may refer to something considered unimportant:

• E.g., who cares if all the files aren’t closed, if the program is
about to exit anyway.

• E.g., yes, there is a race condition between two logging
statements, but that’s not important.

• Even if the report is technically wrong
• Developers may see potential problem, and fix.

17

Criteria For Good Automated Program
Analysis
• Efficient and Easy
• Should not require whole program or annotations.
• Should be automatically applied as part of workflow

• Rarely spurious
• No more than 10% effectively false positive.

• Actionable
• Should point out things easy to fix.

• Effective
• Problems should be perceived as important.

18

Source: Software Engineering at Google, Chapter 20

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch20.html

Could static analyses replace testing?
• Short answer: no, not anytime soon.
• There are ways for mathematically proving that a

program satisfies its specification
• But:

1. You need a specification
2. Existing proof techniques don’t scale
3. And your proof is no better than your specification

• Go take a course in Formal Methods
• Khoury has a whole research group on this

19

Review: Learning Objectives for this Lesson
• You should now be able to:
• Explain what a static analyzer is, and give some

examples.
• List some of the things that a static analyzer could do
• Explain some limitations of static analyzers in practice.

20

