CS 4530: Fundamentals of Software Engineering

Lesson 9.3 Static Program Analysis

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

* By the end of this lesson, you should be able to:

* Explain what a static analyzer is, and give some
examples.

* List some of the things that a static analyzer could do
* Explain some limitations of static analyzers in practice.

A Static Analyzer checks the program
without running it

* It inspects the program to detect certain patterns in the code.
* These could be patterns or anti-patterns.
* Could be bugs or style conventions

* Examples:

* The Typescript type checker
e ESlint

The Type System is a Static Analyzer

* The type checker reads the program and checks to see that every
place where a function is called, the given arguments match what the
function expects.

e Benefits:

* No pesky type errors at runtime

* VSC runs the typechecker as you write, and provides explanations of the
problems it finds.

* Guaranteed 100% statement coverage, even in dead or rarely executed code.

ESLint is your (favorite|least favorite) static
analyzer

* Linters = static analyzers for finding problematic patterns in code,
stylistic errors, bugs

* ESLint is a popular linter for JavaScript

 Customizable via a set of rules

Possible Problems

These rules relate to possible logic errors in code:

array-callback-return enforce “return’ statements in callbacks of array methods
v constructor-super require “super()" calls in constructors
v for-direction enforce "for" loop update clause moving the counter in the right direction.
v getter-return enforce “return” statements in getters
v no-async-promise-executor disallow using an async function as a Promise executor

no-await-in-loop disallow "await" inside of loops

Static Analyses can detect some dangerous

anti-patterns

e CWE-798: Use of Hard-

coded Credentials

<SCRIPT>

function passWord() {

var testV = 1,

var passl = prompt('Please Enter Your Password',' ");
while (testV < 3) {

if (lpassl)

i 'ga(1)!
if (passl.toLowerCase() == "letmein")
alert('You Got it Right!);

window.open('protectpage.html’);
break;

H
testV+=1;

var passl =

prompt('Access Denied - Password Incorrect, Please Try Again.",'Password’);
t
if (passl.toLowerCase()!="password" & testV ==3)
history.go(-1);

return " "

'
</SCRIPT>

<CENTER>

<FORM>

<input type="button" value="Enter Protected Area" onClick="passWord()">
</FORM>

</CENTER>

==

https://cwe.mitre.org/data/definitions/798.html

Static Analysis showed this kind of fault was
widespread

* CWE-798: Use of Hard-coded Credentials: Study of
1.1m Android Apps

| | Amazon | Facebook | Twitter | Bitly | Flickr | Foursquare | Google | LinkedIn | Titanium |

Total candidates 1,241 1,477 28,235 3,132 | 159 326 414 1,434 1,914
Unique candidates | 308 460 6,228 616 89 177 225 181 1,783
Unique % valid 93.5% 71.7% 95.2% 88.8% [100% [97.7% 96.0% |97.2% 99.8%

Table 5: Credentials statistics from June 22, 2013 and validated on November 11, 2013. A credential may consist of an ID
token and secret authentication token.

‘ Playdrone
AKIA* Line filter (Ruby regex), optior 10 filesperpagej

416 Files / 8.98 MB (ES took 0.131s) «— Previous 723456789 ... 4142 Next —
Android Package Path Line
AppConst.java public static final String AMAZON KEY ID = "AKIA
SongManager.java BasicAWSCredentials localBasicAWSCredentials = new BasicAWSCredentials("AKIA e tze3 /11D
shoutcast.java ("AWSAccessKeyId=AKIA)).append("AssociateTag=mariuviorda

20&").toString())).append(“ItemPage=1&").toString())).append("Keywords=").append(str2).append("&").to5t
Shoutcast.java ("AWSAccessKeyId=AKIA ")) .append("AssociateTag=mariuiorda

20&").toString())).append("ItemPage=1&").toString())).append("Keywords=").append(str2).append("&").toSt

FluDataReaderSimpleDBImpl.java final String accessKeyId = "AKIAJ
FluDataReaderSimpleDBImpl.java private SimpleDB simpleDBClient = new SimpleDB("AKIA ", "25FIvKg5ilbLnmBrSqGw@@Dwgol@baN
Trigonometry Definition.java 8akIa8bl/2mlpdLWyqTbhNPFkeNN533CAvtug4dRLPDoSZtckU/JFBRAVO1/HxGSE9jplj3skcexk75t0gUlr/sIX18nV+TxPMHBLAQQ

“A Measurement Study of Google Play,” Miennet &t:al, SIGMETRICS 214 0 aak iRk j akAAAAAAAAAARAUKAUBRWY 2206h0eHh5XPS zUONKRXXnmE TwUQA4 cPHIAh04 FU3d1

ohiapp13.java String strl = work@3(paramString, "", "AKIAJ ', "ecs.amazonaws.jp", "AtxeExfJ7HIbQhDLlbdmc

https://cwe.mitre.org/data/definitions/798.html

This discovery led to action.

AWS urges developers to scrub GitHub
of secret keys

By Munir Kotadia
Mar 24 2014
10:18AM

13 Comments

Amazon to block
police use of facial
recognition for a year

Amazon turns to
Chinese firm on US
blacklist to meet
thermal camera needs

UN experts demand
probe into alleged
Saudi hack of Amazon
boss Bezos

Glenn Gore moves
from AWS to Affinidi

Devs hit with unexpected bills after
leaving secret keys exposed.

Amazon Web Services (AWS) is urging developers using
the code sharing site GitHub to check their posts to ensure
they haven't inadvertently exposed their log-in
credentials.

Thousands of ‘secret keys’, which unlock access to private
Amazon Web Services accounts are currently available
unencrypted to members of the public with just two clicks of a mouse.

The secret keys are issued by Amazon Web Services when users open an account and provide applications
access to AWS resources.

When opening an account, users are told to “store the keys in a secure location” and are warned that the
key needs to remain “confidential in order to protect your account”.

AWS reminds subscribers that "anyone who has your access key has the same level of access to your AWS
resources that you do. Consequently, we go to significant lengths to protect your access keys, and in
keeping with our shared-responsibility model, you should as well."

That example wasn’t hard: the tool just
looked for a certain regex.

e GitGuardian (Launched in 2017)

Keep secrets out
of your source code

SCAN YOUR SOURCE CODE TO DETECT API KEYS, PASSWORDS, CERTIFICATES,
ENCRYPTION KEYS AND OTHER SENSITIVE DATA IN REAL-TIME

https://www.gitguardian.com/

Out-of-date dependencies may contain
vulnerabilities

e A9:2017-Using Components with Known

Vul biliti
Il C -l jon-bell merged 1 commit into master from dependabot/maven/junit-junit-4.13.1 (5 22 days ago

() This automated pull request fixes a security vulnerability
Only users with access to Dependabot alerts can see this message. Learn more about Dependabot security updates, opt out, or give us feedback.
L r You Filr

Vulnerab 1y Vulnerabe 7y vou Fing

Dozo

Bump junit from 4.12 to 4.13.1 #155

Introo

= = » L) Conversation 0 - Commits 1 [Fl Checks 2 Files changed 1

&
I., «| dependabot bot commented on behalf of github on Oct 13 Contributor =~ (@) -

Bumps junit from 4.12 to 4.13.1.

» Release notes

Pubkshez Attack 3
» Commits

&3 compatibility '93%

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually
by commenting @dependabot rebase .

https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities

Defects Static Analysis can Catch

* Defects that result from inconsistently following simple, mechanical
design rules.
e Security: Buffer overruns, improperly validated input.
 Memory safety: Null dereference, uninitialized data.
Resource leaks: Memory, OS resources.
API Protocols: Device drivers; real time libraries; GUI frameworks.
Exceptions: Arithmetic/library/user-defined
Encapsulation: Accessing internal data, calling private functions.
Data races: Two threads access the same data without synchronization

Key: check compliance to simple, mechanical design rules

A problem has been detected and windows has been shutdown to prevent damage to your
computer.

DRIVER_IRQL_NOT_LES_OR_EQUAL

If this is the first time you've seen this stop error screen, restart your computer, If
this screen appears again, follow these steps:

Check to make sure any new hardware or software 1is properly installed. If this is a new
installation, ask your hardware or software manufacturer for any windows updates you might
need.

If problems continue, disable or remove any newly installed hardware or software. Disable
BIOS memory options such as caching or shadowing. If you need to use Safe Mode to remove
or disable components, restart your computer, press F8 to select Advanced Startup Options,
and then select Safe Mode.

Technical information:

*%% STOP: 0x000000D1 (0x0000000C,0x00000002,0x00000000,0xF86B5A89)

=% gv3.sys - Address F86BS5A89 base at F86B5000, DateStamp 3dd9919eb

Beginning dump of physical memory
Physical memory dump complete.

Contact your system administrator or technical support group for further assistance.

Static Analysis isn’t perfect

* Example: “every opened file is eventually closed”
* An analysis could miss some closes of opened files
e Or it could miss some open file not getting closed.

13

Getting precise results may require
compromise

* Getting precise results may take time:
* Some algorithms take exponential time.
* Practical algorithms are limited to linear time

* Getting precise results may require whole program:

* |f parts of the program loaded at runtime:
* Analysis results may be very imprecise, or (worse)
* Incorrect, if they assume the whole program is available.

* Getting precise results may require intervention:

* Code may need to be annotated with information:

* E.g., “this method may return an open resource.”
* E.g., type annotations

14

What happens when an analysis is
imprecise?

FALSE NEGATIVES FALSE POSITIVES

* The static analysis misses * The static analysis reports a
something “bad” in program: problem that doesn’t exist:

e Can give a false sense of * Real bugs can be swamped by a
security. flood of spurious reports.

* Can be reduced, but at the cost * Programmer time is wasted
of false positives! chasing down false leads.

15

Report

Bug Detection

We generate a
false alarm.

Bug is absent

We correctly

find no problem.

True
Positive

False

Positive

False
Negative

True

Negative

No Report

We correctly
detect a bug.

Bug is present

We miss a bug
in the system.

16

The fate of a bug report depends on more

than whether or not it is accurate

* A report from static analysis is effectively false,
* Ifitis ignored by developers;
 Whether or not it represents a true bug.

* Even if the report is technically correct

* |t may refer to something considered unimportant:

* E.g., who cares if all the files aren’t closed, if the program is
about to exit anyway.

* E.g., yes, there is a race condition between two logging
statements, but that’s not important.

* Even if the report is technically wrong
* Developers may see potential problem, and fix.

17

Criteria For Good Automated Program
Analysis

e Efficient and Easy
e Should not require whole program or annotations.
* Should be automatically applied as part of workflow

* Rarely spurious
* No more than 10% effectively false positive.

* Actionable
* Should point out things easy to fix.

e Effective
* Problems should be perceived as important.

Source: Software Engineering at Google, Chapter 20

18

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch20.html

Could static analyses replace testing?

 Short answer: no, not anytime soon.

* There are ways for mathematically proving that a
program satisfies its specification

* But:

1. You need a specification
2. Existing proof techniques don’t scale
3. And your proof is no better than your specification

* Go take a course in Formal Methods
* Khoury has a whole research group on this

19

Review: Learning Objectives for this Lesson

* You should now be able to:

* Explain what a static analyzer is, and give some
examples.

* List some of the things that a static analyzer could do
* Explain some limitations of static analyzers in practice.

20

